If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+400x-9600=0
a = 1; b = 400; c = -9600;
Δ = b2-4ac
Δ = 4002-4·1·(-9600)
Δ = 198400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{198400}=\sqrt{6400*31}=\sqrt{6400}*\sqrt{31}=80\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(400)-80\sqrt{31}}{2*1}=\frac{-400-80\sqrt{31}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(400)+80\sqrt{31}}{2*1}=\frac{-400+80\sqrt{31}}{2} $
| A+c=4 | | 32=50x | | 2+x+5.5=100 | | 2x+15=300 | | 4x-24=7 | | 3/4m=21/28 | | (8-3x)^2=25 | | 188=65-x | | x=1.5/(1-x) | | X+1/3x+20=68 | | (y-39)(4y+18)(y+12)=0 | | -3p-7=15 | | 0.11y+0.05(y+9000)=1730 | | 2(3x+1)+3(4x+5)=23 | | 25=500x | | 2(3x+4)+x=36 | | X=1.1/x+1 | | x+7=x+23 | | x+35+90+x-5=180 | | -4n+1=6n+8-8n+15 | | (x+3)^3+27=0 | | 3.2^x=12 | | 4(10.25-0.75y)=41 | | x(.1)+x=27.19 | | x(.1)+x=2.19 | | 7^(-x+4)=75 | | 100x=35 | | 16x*2+111x+369=0 | | 6x2-35x+48=0 | | 3x+20-x-10=0 | | Y^2-27y+36=0 | | .2(y)=82 |